Park Potomac Office Building "E"

Kyle Wagner I Structural Option
AE Senior Thesis I Spring 2010
Faculty Consultant I Prof. Kevin Parfitt

- •Project Information
- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- •Acknowledgements
- •Questions and Comments

Project Information

- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Project Information

- •Located off I-270 in Potomac, MD
- •Part of Park Potomac Place
- •Townhomes, Office Space, Retail, Dining
- •Prominent location within Community
 - •Focal point from Cadbury Ave.
 - •Face of community from I-270

View from Cadbury Ave

www.parkpotomacplace.com

Project Information

- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- Questions and Comments

Project Information

- •Two levels mostly underground parking
 - •100,000+ SF each
- •Seven levels of mostly office space
 - •Approx. 25,000 SF each

Building Footprint

North Entrance to Parking Levels

- Project Information
- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Existing Structural System

- •Underground Parking all Cast-in-place concrete
- •7" Thick slab post-tensioned in N-S direction
- •72" x 20" D Beams post-tensioned in E-W direction
- •Concrete Moment Frames in both directions
- •Long Spans accomplished
 - •Flexibility for Tenant
- •12' Cantilever at N, S ends

Existing Structural System

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Problem Statement

- Concrete structure results in large building self weight
 - Larger gravity members result
 - Large mat foundations at soil level
 - Central Foundation 52' x 64' x 60" Deep
- Longer schedule duration from concrete construction
- End Result: Negative Cost and Schedule Implications

Existing Foundation Plan

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Problem Solution

- Reduce building self weight by utilizing a steel structure
- Composite Beams and lightweight concrete used
- To maintain integrity of existing design:
 - Maintain current column layout
 - Maintain current ceiling heights in Tenant Spaces
 - Maintain current MEP Spaces
- Braced Frames used to resist lateral forces
- Steel construction likely to reduce construction schedule
- Parking levels will remain unchanged

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Project Goals

- Reduce building self weight
- Maintain integrity of tenant spaces
- Reduce overall cost
- Reduce schedule duration

- Project Information
- •Existing Structural System
- •Problem Statement and Solution
- Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- •Questions and Comments

Design Loads

- Design Loads
 - •ASCE 7-05
- Superimposed Dead Loads
 - •5 psf Floor
 - •10 psf Roof
- •Flat Roof Snow Load
 - •21 psf

Floor Live Loads					
Area	Design Load (psf)	ASCE 7-05 Load (psf)			
Assembly Areas	100	100			
Corridors	100	100			
Corridors Above First Floor	80	80			
Lobbies	100	100			
Marquees & Canopies	75	75			
Mechanical Rooms	150	125			
Offices	80 + 20 psf Partitions	50 + 20 psf Partitions			
Parking Garages	50	40			
Plaza, Top Floor Parking	Fire Truck Load or 250 psf	250			
Retail- First Floor	100	100			
Stairs and Exitways	100	100			
Storage (Light)	125 125				

Live Load Values

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Gravity System Design

- •5 ½" Thick Slab on 2", 18 Gage Metal Decking
 - •Provides adequate 2 hour fire rating between floors
- •Beams spacing does not exceed 10'
 - Unshored
 - •Minimize number
 - of beams required
- •Columns spliced every

other floor

RAM Model

Typical Floor Layout

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Cantilevered Ends

- 12' Cantilever on North and South Ends
- Unobstructed glass around building corners

- •Four beams used to transfer load back to columns
- •Beam required:
 - •W18x55

•Moment connection at interior to balance moment at column

- •Moment from cantilever: 575 ft-k
- •Moment from interior: 376 ft-k
- •Moment to column: 199 ft-k
- •Design for moment and axial due to
- gravity load
- •Final Design shown at right

William Willia

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Floor Depth Comparison

- Existing post-tensioned system
 - 20" depth at beams

- 51/4
 - - Deepest Beam: W27x84
 - Floor Depth Approx. 32"

• Maintain ceiling heights and MEP Spaces

- Increase overall building height
 - No code restrictions
 - Increase by 12" per floor
 - Overall height increase by 7'
 - Recalculate lateral loads

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Lateral Loads

- Wind: Method 2 of ASCE 7-05 Chapter 6
 - Assume wind negligible beneath plaza level
- Seismic: ELFP of ASCE 7-05 Chapter 11
 - Seismic Design Category B
 - Seismic Base Level taken at plaza level
- Wind controlled for strength and serviceability

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

ETABS Model

- 7 Load combinations, 4 wind cases, accidental torsion (5% ecc.) due to seismic all manually included
- Floors modeled as rigid diaphragms
 - Loads distributed based on relative stiffnesses of frames
- Only lateral system modeled
- Gravity loads applied using additional area mass to diaphragm

ETABS Model

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

Braced Frame Design

- Symmetry in Geometry and Stiffness
- Loads distributed evenly to each frame

- SAP used to calculate forces in braces for critical load combination
- •Critical load combination used to design columns
- •Final Brace Frame Design shown at right
- •E-W Frames larger than N-S Frames

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Lateral Analysis

- Primary controlling load case was 0.9D+1.6W
- Controlling wind case was Wind Case 1
- Center of mass and rigidity both at geometric center
- Overall building torsion was negliglible
- Wind drift within L/400
- Seismic drift found to be well within limitations

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- •Questions and Comments

- Steel Structure Foundations
 - •17' x 17' x 34" Deep (U.N.O.)

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- •Questions and Comments

Cost/ Schedule

- Detailed takeoffs completed for both systems
- Foundations cost reduced 78%
- Total Structure cost reduced by 25%
- \bullet Schedule predicted to be decreased by approx. 10 months
 - •General conditions savings not factored into cost results

Original Structure						
	Mat'l	Labor	Equipment	Total	COST/SF	
Foundations	\$272,327	\$59,403	\$250	\$331,980	\$1.90	
Superstructure	\$2,532,939	\$1,594,087	\$48,370	\$4,175,396	\$23.86	
Total Incl. Additional Costs				\$27.83		
Steel Redesign						
	Mat'l	Labor	Equipment	Total	COST/SF	
Foundations	\$54,082	\$17,076	\$1,874	\$73,033	\$0.42	
Superstructure	\$2,669,627	\$290,079	\$114,563	\$3,074,269	\$17.57	
Total Incl. Additio	nal Costs				\$19.43	

- •Assuming \$50 per SF of building enclosure
 - •\$224,000 additional
 - •Final Steel cost of \$20.69 per SF

- •Project Information
- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- •Questions and Comments

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- Additional Topics
- •Conclusions
- Acknowledgements
- Questions and Comments

Further Improvements

- Potential to reduce floor depth
 - From Earlier:
 - Deepest Beam: W27x84

- Use W21 x 93 instead
- Constrain 10 beams on each floor
- Floor depth required: 32" → 26"
- Overall height increase by 3.5', not 7'

- Potential to balance additional moment
 - •Unbalanced moment: 199 ft-k

- Decreasing cantilever distance or increase moment on interior
- •Much smaller columns will result

- Project Information
- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- •Questions and Comments

Conclusions

- Reduce building self weight
- <u>×</u>
- Maintain integrity of tenant spaces

- Reduce overall cost
- Reduce schedule duration

• Steel could have been a viable and beneficial alternative.

Office Building "E"

- Project Information
- •Existing Structural System
- Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- Conclusions
- Acknowledgements
- Questions and Comments

- •Project Information
- •Existing Structural System
- •Problem Statement and Solution
- •Structural Depth Study
- •Cost and Schedule Analysis
- •Additional Topics
- •Conclusions
- Acknowledgements
- **•Questions and Comments**

